Thermal expansion behavior of ultrathin polymer films supported on silicon substrate
نویسندگان
چکیده
منابع مشابه
Thermal expansion behavior of ultrathin polymer films supported on silicon substrate.
The thermal expansion behavior of polystyrene (PS) thin films was investigated using x-ray reflectivity, focusing on ultrathin films below 10 nm. It was found that the glass transition temperature T(g) decreases with thickness as reported by many researchers while it is almost independent of thickness and constant at 354 K for films below approximately 10 nm. The thickness dependence of T(g) wa...
متن کاملGlass transition in ultrathin polymer films: a thermal expansion study.
The glass transition process gets affected in ultrathin films having thickness comparable to the size of the molecules. We observe systematic broadening of the glass transition temperature (T(g)) as the thickness of an ultrathin polymer film reduces below the radius of gyration but the change in the average T(g) was found to be very small. The existence of reversible negative and positive therm...
متن کاملWrinkling of Ultrathin Polymer Films
This paper presents a bilayer model to account for surface effects on the wrinkling of ultrathin polymer films. Assuming a surface layer of finite thickness, effects of surface properties on the critical strain, the equilibrium wavelength, and the wrinkle amplitude are discussed in comparison with conventional analysis. Experimental measurements of wrinkling in polymer films with thickness rang...
متن کاملThermal stability of ultrathin titanium films on a Pt(111) substrate
We report annealing studies using He-ion scattering spectroscopy (He-ISS) and X-ray photoelectron spectroscopy (XPS) to evaluate the thermal stability of ultrathin Ti films deposited on a Pt(111) single-crystal surface at 300 K. These results establish that strong Pt–Ti intermetallic bonding provides sufficient driving force for thermal interdiffusion of Ti and Pt at a (111)-oriented interface ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2004
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.69.061803